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Note 

Rapid Calculation of Coordinates from Distance Matrices 

1. INTRODUCTION 

One of the major difficulties in the calculation of conformation by the “distance 
geometry” approach [1] has been that of producing a set of three dimensional 
Cartesian coordinates vi , i = I,..., n for II points, given an IZ X n matrix of upper 
bounds U and lower bounds L on the interpoint distances: 

lij < dij = /I vi - vj // < uij , for i,j = I,..., n. (1) 

We are not concerned here with the determination of U and L, but rather with the 
calculation of any set of v’s satisfying (l), assuming that a solution exists. A proposed 
distance matrix D chosen at random such that lij < dij < uij for all i and j, does not 
correspond in general to any set of v’s in the three dimensional Euclidean space because 
the corresponding (n + 1) x (n + 1) bordered matrix of squared distances, C, is in 
general not of rank 5 (see [I] for proof). Here cij = djj for i, j = l,..., II and cien+r = 
C n+l,i = 1 for i = I ,..., iz and c,+~,~+~ = 0. Furthermore, generating the v’s analyti- 
cally according to (6) of [l] directly from D (or C) results in increasingly larger 
violations of (1) for larger i and j. Direct alteration of C (and hence D) in order to 
reduce its rank to 5, permits the straightforward calculation of v’s from the modified D, 
but the modification algorithm in [I] (involving Gaussian elimination and direct 
alteration of individual matrix elements) required computer time proportional to I? 
and memory space proportional to n2. 

One can devise a more efficient method, time and memory requirements depending 
only linearly on IZ, by resolving the real, symmetric matrix C into its eigenvalues and 
eigenvectors: 

C = EAE= (2) 

where E = (e,$) is the column matrix of eigenvectors and A = (hi) is the diagonal 
matrix of corresponding eigenvalues. The h’s are real and may be ordered so that 
I A, I > I x3 I > -**; the eigenvectors are real and may be taken as orthonormal [2]. 
The condition that C have rank 5 is equivalent to requiring I A, I > h, = h, = --* = 
A a+l = 0. Thus we may calculate a modified C matrix, denoted by C’, from (2) after 
setting the sixth and subsequent eigenvalues to zero: 

5 
c& = C eikhke,, for i, j = l,..., It + 1 

k-1 
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Then C’ is the rank 5 matrix closest to C in the spectral sense, but some elements 
may violate (l), some diagonal elements may be non-zero, and some border elements 
may not be equal to unity. We have tried a number of iterative schemes to correct 
these discrepancies, but in our hands they either converged very slowly or not at all. 
In the examples we have tried, C is well-conditioned with respect to its eigenvalues 
but ill-conditioned with respect to its eigenvectors. By numerically minimizing the 
above deviations using as variables the 5 eigenvalues of largest modulus and the 
components of their corresponding eigenvectors, one can avoid the instability 
difficulties, but the constraints are awkward to handle. There are [5 variable 
eigenvalues] + [5(n + 1) variable components of the five eigenvectors] - [(n + 1) 
constraints of zero diagonal elements] - [n constraints of unity border elements] - 
[15 constraints from the orthonormality of the five eigenvectors] = 3n - 6 net degrees 
of freedom, which is what one would expect, since we are seeking the x, y and z 
coordinates of n points, up to a rigid translation and rotation (and mirror inversion). 
C’ is automatically symmetric, as can be seen from (3). 

2. ALGORITHM 

Our most successful method for large n consists of: (i) choosing D at random, 
bounded element-wise by U and L as described; (ii) calculate the first 5 eigenvalues 
and eigenvectors of the corresponding C matrix; (iii) calculate C’ from (3); (iv) 
calculate the v’s from the first four rows of C’ according to (6) of Ref. [I]; and 
(v) minimize f(v 1 ,..., v,) with respect to the 3n Cartesian coordinates 

(dfj - u:jj>2, dij > Uij 
f 65 ,-*-, v,> = c 

f 
0, lij < dii < ~ij (4) 

Jo (dfj - l;j)2, dij < IiT 

where dij = I] vi - v, 11, the ordinary Euclidean norm. Step (ii) is conveniently done 
by the method of “exhaustion,” where the eigenvalue of largest absolute value, A1 , 
and its corresponding eigenvector e, are found by iterating for k = 1,2,... 

WY) . w’kY) ~ x 
(C-y) * (C’ky) l ’ as k-too (5) 

and C”cy -+ e, , for arbitrary y, 
Then AZ is found similarly by using C’ - A,ere,r in the place of C’ in (5), and so 

on [3]. Convergence of the A’s to six significant figures is regularly achieved well 
before k = 100, even when two eigenvalues are close in magnitude. The computational 
effort involved in the matrix-vector multiplication goes up as net but since only the 
first 5 eigenvalues are sought, the cost otherwise depends linearly on II. Step (iv) is 
remarkably stable. For instance, in our calculations of conformations of the small 
protein, bovine pancreatic trypsin inhibitor (BPTI), II = 58, di,i+l = 3.8 A, and 
6.0 A G 4.55 3 44.m 3 ho,, . < 6.5 A. In other words, U and L enforce a chain of 
57 fixed length steps with three short crosslinks spanning nearly the whole chain. 
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Other distances are much less constrained. Calculation of the v’s from C would 
result in a,,,, - 100 and so on, whereas using c’ we regularly achieve crosslink 
distances between 5 and 10. Thus step (iv) initially positions the points in an overall 
correct fashion, although with still some substantial errors. Step (v) is a nonlinear 
least squares minimization of the function f, which has zero value at any solution, 
strictly positive values elsewhere, and continuous first derivatives everywhere. The 
gradient can easily be calculated analytically, so we use initially steepest descent 
minimization until (/ Vf]12 < lo5 As and then Fletcher-Reeves conjugate gradient 
minimization [4] until )I Vfl[” < lo3 A6, resulting inf < 1 A4 and a largest term in (4) 
of 0.01 A4 or less. Typical initial values off are about lOlo A4. Both minimization 
algorithms have storage requirements proportional to n, so large numbers of variables 
are easily handled. As a test of the method, we chose uz = 1.05gFj and li”j = 0.95gFj , 
where the gii are the distances between Cal atoms of BPTI taken from the x-ray 
crystallographic coordinates [5]. On the Lawrence Berkeley Laboratory’s CDC 7600, 
each conformation generated according to the algorithm above took an average of 
2.7 seconds. By way of comparison, minimizing from arbitrary starting points with 
the same U and L takes about 5 times as long [6]. The performance with looser upper 
and lower bounds is similar. The starting configuration in step (iv) is close enough 
to the minimal region off that convergence to spurious local minima rarely occurs, 
in our experience. This is in sharp contrast to the difficulties experienced when using 
arbitrary starting points [6]. 

The method also performs well when the upper and lower bound matrices are 
much less restrictive. When U and L correspond to only fixed i to i + 1 distances 
and the three crosslinks of BPTI (plus their logical consequences regarding all other 
distances, as deduced from the triangle inequality [1]) then only 1 second of computer 
time per structure is required. Convergence is about as rapid and precise as with 
tight bounds, and we have encountered no spurious local minima. Of course there is 
a great deal of conformational variability among the resultant structures since the 
bounds are so loose. 

3. SUMMARY 

In conclusion, we have devised and tested a practical algorithm for rapidly solving 
(1) in the difficult case of large it and numerous strong constraints. Computer time 
increases only quadratically and memory requirements increase only linearly with n, 
and there is little difficulty with multiple minima. We hope this will make the distance 
geometry approach to conformational calculation more feasible for large, highly 
constrained systems. 
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